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Abstract

In this paper, a high order finite difference weighted essentially non-oscillatory

(WENO) scheme is combined with adaptive mesh refinement (AMR) to solve prob-

lems that require multi-resolution in space and time. Because conservative finite

difference schemes of third or higher order of accuracy can only be achieved on

uniform rectangular or smooth curvilinear meshes, either conservation or high or-

der accuracy is lost when the WENO schemes are applied to the AMR framework.

Several implementations are considered and compared to see which is more impor-

tant: accuracy or conservation. The numerical experiments show that the general

conservative implementation of AMR for finite-volume method can be used for high

order WENO schemes without loss of much of accuracy.

1 Introduction

The significance and advantages of using high order (higher than three) schemes in numerical

simulation have been demonstrated by many applications (see Shu [17]). WENO schemes

are designed based on the successful essentially non-oscillatory (ENO) schemes (see [15]

and its references). High order finite volume and finite difference WENO schemes have been
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constructed in the past decade (see the review paper [17] and its references). It is well-known

that high order finite difference WENO schemes have the advantage of simpler coding and

smaller computational cost for multi-dimensional problems, compared with finite volume

WENO schemes of the same order of accuracy. However a main restriction is that conservative

finite difference schemes of third or higher order of accuracy can be achieved only on uniform

rectangular or smooth curvilinear meshes [14].

Adaptive mesh refinement (AMR) is another useful tool to achieve high accuracy and res-

olution. AMR automatically refines grid in regions where high resolution is required. The

final AMR mesh can contain grids of many refinement levels. Each grid (called patch) can be

a uniform rectangular or smooth curvilinear mesh. It is easy to apply the high order WENO

scheme to each patch. However, interpolation is required for the newly-generated fine mesh

and for the boundary conditions at fine-coarse mesh interface. Interpolation in any manner

is non-conservative if they are not based on cell averages. Thus, although the numerical

schemes in each patch are conservative, the global schemes may not be conservative if the

interface between difference patches are not treated conservatively. A conservative interface

treatment would require the usage of cell averages. Even for the cell-average values, it is

impossible to construct a high order (higher than 2) conservative polynomial in each cell for

any refinement ratio.

For numerical simulation of a complex fluid, such as turbulence fluids, both high order

discretization and AMR are demanded. It is pointed out in [10] that even ENO schemes as

high as sixth-order can be too dissipative for the turbulence if mesh is not fine enough near the

shock. Although both WENO and AMR have been proposed for a long time, implementing

WENO to the AMR framework is still in its infancy. As far as we have known, we did not find

any literatures on this topic. In this paper, we proposed a simple implementation that utilizes

the available AMR resource. We compared the high order non-conservative interpolations

with the second order conservative interpolations, and found the conservative interpolation

were much better.

The outline of the paper is as follows. In Section 2, we described briefly the Berger-Colella’s

AMR framework for the finite-volume method, and then described our AMR implementation

for the finite-difference multi-stage time integration method. In Section 3, we described the

high order non-conservative interpolation and second order conservative interpolation that

would be used in the AMR framework for WENO schemes. We also pointed out a local

flux splitting may be required for conservation of the flux at internal boundaries of AMR.
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In Section 4, we presented some numerical examples to test the interpolation schemes for

accuracy and conservation.

2 Adaptive mesh refinement

For the sake of completeness, we will first give a brief overview on the Berger-Colella [1]

AMR strategy for finite-volume method. Then we describe our AMR implementation for

finite-difference method and for multi-stage time integration that is used by WENO scheme.

The detail of our AMR implementation was described in [4,5]. To be concise, we here describe

only the outline of the implementation.

2.1 Berger-Colella AMR algorithm

Given a grid and solution on it, we first flag those cells that require refinement and then

cluster them into several rectangular grids, call patch. For each newly-generated patch, we

interpolate the solutions from the coarse grid to the new grid. If the old mesh already has

some refinement and they share with the new mesh, the solution should be copied from the

old fine mesh to the new one. The whole regridding procedure from the old mesh solution to

the new mesh solution is called prolongation. If the initial conditions are defined analytically,

the initial conditions on the new grid are also defined analytically. Each patch can be treated

as a single grid. Further refinement can be done recursively until no refinement is needed or

the finest refinement level is reached.

During the time integration, the coarse grid is integrated first, and then the fine grid. The

boundary conditions of the fine grid are defined by either external boundary conditions, or

adjacent sibling patches, or interpolations from the coarse parent grid. After the integration

of the fine grid is done, we transfer the more accurate fine grid solutions to the parent coarse

grid. This procedure is called restriction. The restriction could cause a loss of conservation

at the interfaces between a fine and a coarse grid. A flux correction step is proposed in [1]

to maintain that the consistent fluxes are used at the fine-coarse interface.

Since the time stepsize is usually determined by the finest grid. Berger and Colella used a

local time step method to improve the efficiency. This local time step method allows the fine
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grid takes smaller time step than the coarse grid before they reach the same time level.

2.2 AMR for finite-difference method

Unlike in the finite-volume method, where the solution variables are always cell-centered (or

face-centered for vector field), the solution variables are usually node-centered in a finite-

difference method. The node can locate on the domain boundary. We have developed a

node-based AMR framework [4] for finite-difference method. The node-based AMR differs

from the the cell-centered implementation in two aspects. First, two patches in a level can

share the same internal nodes (not only ghost cells) in high dimensions (2D or 3D). A 2-D

node-based AMR example is illustrated in Fig. 2.1. Second, a coarse node always shares

−− coarse grid node −− fine grid node

Fig. 2.1. Mesh refinement for finite difference node-based method

with a fine node in the same location. This drastically simplify the restriction operation in
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AMR framework. The fine grid solution can be copied directly to the coarse grid without

any interpolation.

Since the solution variable is node-based, how to flag the cells that need further refinement

is different from the cell-centered method. The point-value of the monitor function (or error

estimate) is calculated first on each node, and then an average value is evaluated for each cell.

If a cell is flagged for further refinement, it is split into fine-cells according to the refinement

ratio. For a 2D problem with refinement ratio of 2 in each direction, a cell that contains four

nodes can generate nine nodes for a fine grid.

Although relationship between the coarse and fine solutions is simple for the node-based

AMR, it is difficult (or impossible?) to make the node-based AMR conservative. First it is

difficult to design a conservative interpolation scheme either locally or globally. Second it is

difficult to apply the flux correction step proposed by Berger and Colella, because a coarse

cell and a fine cell at the fine-coarse interface do not share the same interface.

It seems that the cell-centered AMR framework must be used to make AMR conservative.

Compared with the node-centered AMR, one of the disadvantages for the cell-centered AMR

is that a coarse grid cell-centered value does not share with a fine grid cell-centered value

for the refinement ratio of an even number. The interpolation is required for the restriction

operation. Moreover, the solution variables cannot locate at the domain boundary for a

cell-centered AMR implementation.

We have implemented both cell-centered and node-centered algorithm in our AMR frame-

work. We found that for if the high order non-conservative interpolation was used, both

methods produce almost the same solutions.

2.3 AMR algorithm for multi-stage time integration

The multi-stage time integration is often used to achieve high order temporal accuracy

for semi-discretized PDE. The PDE is first transformed into an ODE system by spatial

discretization, and then an ODE solver, such as a Runge-kutta or a multistep method, is

used to advance in time. This approach, namely the method of lines (MOL) plus an ODE

solver, has an advantage of simplicity, both in concept and in coding. The multistage time

discretization can achieve arbitrary order of accuracy, depending on the spatial discretization
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and order of the ODE solver. In this approach, it requires data communications between the

AMR grids in each of the intermediate stages. The external boundary conditions also needs

to be computed in each stage. Hence we cannot plug this type of solver directly into the

Berger-Colella AMR framework.

One issue is how to interpolate the coarse parent grid solutions to get the boundaries data for

the current level grid at intermediate stage. There are two approaches to do both time and

space interpolation: one is to use only the coarse parent data saved at tn and tn+1, the other

is to use the intermediate state of the coarse parent data. It seems that the second approach

would be better than the first one in accuracy. However, we did not see any improvement in

our numerical experiment by using the second approach. This may be because the order of

the intermediate state is lower than that of the solution at tn+1. Since the second approaches

requires more storage, we adopt the first one in our AMR framework. We also improve

the first approach that only one space interpolation is required for the whole time step

integration. The spatial interpolation is applied to the time derivatives du/dt rather than to

the solution u. Therefore, when the interpolation is needed for u at intermediate stage, it

can be easily calculated.

With the solutions only at tn and tn+1, it is impossible to construct an interpolation scheme

in time with order higher than two. To overcome this difficulty and test our high order

interpolation schemes, we used a locked time step method, described in [9]. The locked time

step method disables the time refinement in time integration and allows all of the grids, no

matter it is fine or coarse, take the same time steps. It is proved that tested that the locked

time step method is only slightly slower than the local time step method. For the locked time

step method, the time interpolation is not required and the interpolation order is determined

only by the spatial interpolation schemes.

Another issue with the multistage time discretization is how to calculate the flux at the

interface, which is required for flux conservation by a correction step on the coarse parent

flux. We cannot take the flux at the final stage as the flux for the whole time step. It is also

inefficient to do the flux correction for each intermediate stage. We instead obtain the flux

for the whole time step by composing the flux at each stage together. The composing is not

simply a sum over all of the stages. Take the third order TVD Runge-Kutta solver [15] as

an example. The time discretization contains three stages,

u(1)=un +∆tL(un, tn),
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u(2)=
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1), tn +∆t),

un+1=
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2), tn +

1

2
∆t),

where L(u, t) is a spatial discretization operator. As we can see, each stage has a contribution

to the total flux of the whole time step. The total flux should be

fn,n+1 =
1

6
f(un, tn) +

1

6
f(u(1), tn +∆t) +

2

3
f(u(2), tn +

1

2
∆t),

where f(u, t) is the flux evaluation at each stage.

3 WENO with AMR

The detail of how to construct a high order finite-difference WENO scheme is described in

[6]. As recommended by [17], we used the fifth order WENO scheme combined with the third

order Runge-Kutta method in our implementation. We have mentioned that either the high

order accuracy or conservation can be lost when high order WENO scheme is applied to

adaptive mesh. Sebastian and Shu [14] has proposed a multi-domain finite difference WENO

method with high order interpolation at sub-domain interfaces. Their approach achieves the

high order accuracy for multi-domain computation but the conservation is lost due to the

non-conservative interpolation at the interface.

3.1 High order interpolation

When implementing WENO on an AMR mesh, we can preserve the high order accuracy

by using a aomparable high order interpolation method. This high order interpolation must

be implemented wherever is required, which includes obtaining the values for the newly-

generated fine grid and internal boundary conditions for the integration of the fine patches,

and obtaining the values for the coarse parent grid from the fine grid solutions in the restric-

tion step. As we have mentioned in previous section, the time interpolation can be avoided

by locked time step method. Hence we focus only on the high order spatial interpolation.

The high order method we used is fifth order Lagrange interpolation, which is suggested by

[14].
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A significant concern with the high order interpolation is that conservative error is intro-

duced. In general, a conservative finite difference scheme for a one dimensional conservation

law has the form

un+1
j = un

j −
∆t

∆xj

(

fn
j+ 1

2

− fn
j− 1

2

)

. (1)

Thus if the scheme is truly conservative and periodic boundary conditions are imposed,

∑

j

∆xju
n+1
j =

∑

j

∆xju
n
j , (2)

which by induction leads to

∑

j

∆xju
n
j =

∑

j

∆xju
0
j . (3)

Therefore, the conservation error is given by

CE =

∣

∣

∣

∣

∣

∣

∑

j

∆xju
n+1
j −

∑

j

∆xju
0
j

∣

∣

∣

∣

∣

∣

. (4)

A similar expression can be defined for the 2D case.

3.2 Conservative interpolation

The conservation is important for nonlinear conservation law that involves discontinuities. It

has been proved that if the scheme is conservative and consistent, it is converge to the weak

physical solution. Although the conservation error introduced by high order interpolation

is small. However this conservation error can accumulate for a long time and affect the

accuracy of the numerical solution. In our numerical examples in Section 4, we will see that

the non-conservative high order interpolation did produce bad solutions.

The conservation can be achieved if a conservative second order interpolation is used. This

interpolation is exactly the same as that which is used for the finite volume method: first a

limited slope is computed for each cell-centered coarse value, and then a linear interpolation

is applied to calculate the fine grid values within the coarse cell. The conservative restriction

operation is to take the average value of the find grid solution within a coarse cell and assign
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it to the coarse cell. It can be proved that the order of the conservative interpolation is no

more than two. This might raise a doubt that the high order accuracy is lost due to the

interpolation so that the method is reduced to the low order method. It might be true that a

high order method is reduced to a low order method for a fixed multi-domain grid. However,

the order of accuracy may not be reduced for an AMR implementation, because the most

interested region, which is also the region that contains large error, is always covered by the

fine grid between the time steps and no interpolation is needed for those fine grid.

3.3 Flux splitting

The high order WENO schemes are usually implemented via flux splitting method. As suggest

by Shu in [6], a global Lax-Friedrichs flux splitting,

f±(u) =
1

2
(f(u)± αu), α = max

u
|f ′(u)|

where the maximum is over the whole mesh of the grid, can give as good results as local

flux splitting, where the maximum is only over relevant neighborhood cells. We notices that

the values of α do affect the values of the final flux at the interface. Different α generate

different fluxes. In an AMR grid, two cells in the same refinement level may share the same

interface. To be conservative, the flux calculated for each cell must be equal at the interface.

However, if each patch calculated their α globally within that patch, the values of α may

not be the same, and hence the flux calculated by WENO scheme may not be the same at

the same interface. This will cause conservation error.

There are two approach to fix this problem. The first approach is to take a global α over

the whole level rather than within a patch. This approach needs communications between

different patches in the same level. The other approach is to use the local Lax-Friedrichs flux

splitting. Because the α is calculated locally for each cell, the flux calculated at the same

interface will be the same. For 5th order WENO finite difference scheme, the α at ith cell is

calculated over range from i− 2 to i+ 3 for the flux at i+ 1
2
interface.

4 Numerical Examples

In this section, we present some examples to test the combination of WENO with AMR.
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4.1 Accuracy test

We first solve the linear scalar traveling wave equation,

ut + ux=0

u(x, 0)= sinm(πx), x ∈ [−1, 1],

with periodic boundary conditions.

We test the two-level and three-level refinement with refinement ratio of 3. The norms of

error are given by

L1 - error: ||E||1 =
N
∑

j=1

|u(xj, t
n)− un

j |h

L∞ - error: ||E||∞ = max
1≤j≤N

|u(xj, t
n)− un

j |.

where u(xj, t
n) denotes the exact solution. We stop the integration at t = 10.

It is typically difficult for ENO type schemes to achieve full order of accuracy for this problem

even for m = 4 [16]. To make the problem more suitable for adaptive mesh refinement, we

choose m = 6, which makes the problem even harder to achieve full-order of accuracy. To

reduce the time integration error of the third-order Runge-Kutta method, we used a CFL

number of 0.2. Table 1 shows the results obtained for the AMR and uniform grid. It can be

seen that WENO with AMR can achieve high order accuracy although only second order

interpolation was used. The non-conservative high order interpolation does not improve the

numerical solution on an AMR grid.

4.2 Conservation test

We solve the inviscid Burgers’ equation with various initial conditions and final computation

times:

ut + uux=0, (5)

u(x, 0)=u0(x). (6)
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N Level of refinement L
1 error L

1 order L
∞ error L

∞ order

80 1 0.443e-2 0.132e-1

160 1 0.293e-3 3.92 0.544e-3 4.60

240 1 0.439e-4 4.68 0.999e-4 4.18

320 1 0.113e-4 4.72 0.259e-4 4.69

80 2 0.562e-4 3.97 0.128e-3 4.22

80 3 0.742e-5 2.91 0.455e-4 2.58

80 2∗ 0.604e-4 3.91 0.128e-3 4.22

Table 1

Error estimate of solutions for linear scalar equation ut+ux = 0 with initial condition u0 = sin
6(πx)

at time t = 10. ∗This is tested with high order non-conservative interpolation, where conservation

error is 10−5. The two-level refinement contains about 150 grid points, and three-level refinement

contains about 330 grid points. The L1 and L∞ order for the refinement grid is calculated against

the finest level grid, which may not reflect the accuracy order of the other coarse levels.

The first case is that of a very slow moving shock. The initial condition for this slowly

traveling shock is given as

u(x, 0) =

{

1.02, if x < 0.03;

−1.0, if x ≥ 0.03.

This problem is used in [13] to show that a slowly traveling shock wave has difficulties in

passing through the interface between two overlapping subdomains unless the interpolation

between the sub-domains is made conservative. We solved it with WENO finite difference

scheme combined with two-level refinement.

Figure 4.1-a shows the results of the AMR grid with second order conservative interpolation.

Figure 4.1-b shows the results of the AMR grid with high order (5th order) nonconservative

interpolation. It is clearly seen that non-conservative high order interpolation did not produce

good results. The location of the shock is totally wrong. However, the AMR with conservative

interpolation gives almost the same results as the Uniform mesh method with the same

resolution. The Uniform grid uses about 42.67 seconds for the total computation while the

AMR grid uses only 7.28 seconds.

The second case has been used in [14] to test the ability of the WENO finite difference
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Fig. 4.1-a. WENO on AMR grid with conser-
vative second order interpolation
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Fig. 4.1-b. WENO on AMR grid with noncon-
servative fifth order interpolation

method with high order interpolation algorithm for multi-domain. The initial condition is

chosen as

u(x, 0) = 17.4 + 13.3 sin(πx), x ∈ [−1, 1].

Periodic boundary is used to test the conservation results. In results of [14], the high order

interpolation produced noticeable conservation errors, which cause the resulting numeri-

cal shock location to lag behind the exact shock location. We tested the high order non-

conservative interpolation and second order conservative interpolation in our AMR frame-

work. It shows that the conservative interpolation gives better results although it is only of

second order.

Figure 4.3-a shows the results for the conservative interpolation, and Figure 4.3-b shows the

results for the non-conservative high order interpolation. It is hard to distinguish between

the solutions for the conservative second order interpolation and those generated by the

uniform grid with the same resolution, whereas there are noticeable errors for results of high

order non-conservative interpolations. Since the problem has periodic boundary condition,

we plotted the conservation error for both interpolations in Figure 4.4.

4.3 1-D Euler equations

In this example, we solved Euler equations. For problems that contain only shocks and

simple smooth region solution (almost piecewise linear), a good second order non-oscillatory

scheme would give satisfactory results. There is little advantage in using higher order methods

for such cases. A high order scheme would show its advantage when the solution contains

both shocks and complex smooth region structures or for a long time integration. A typical
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Fig. 4.4. Conservation errors for the strong shock problem

example is given in [15], which is a problem of shock interaction with entropy waves. We

solve the Euler equations with a moving Mach 3 shock interacting with sine waves in density,

i.e., initially

(ρ, v, p) =

{

(3.857143, 2.629369, 10.3333333), for x < −4;

(1 + ε sin(5x), 0, 1) , for x ≥ −4.

13



where ε = 0.2. The computed density ρ is plotted at t = 1.8 against the reference solution,

which is calculated by using a uniform mesh with 1800 grid points. We tested the WENO

scheme with 4 level refinement. The base grid contains 100 cells and he refinement ratio for

each level is 3,3,2 respectively. Therefore, the finest level has equivalent resolution as the

uniform grid of 1800 cells. The results are shown in Figure 4.5. We also tested it with a two

0.5
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3.5

4

4.5

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

de
ns

ity

x
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four-level AMR

Fig. 4.5. The WENO scheme with four-level refinement for the shock density wave interaction

problem. t=1.8.

and three level refinement with the finest level has the same resolution as that of 1800 cells.

The results are shown in Figure 4.6. It is hard to notice the difference between different

refinement levels.

We also test this problem with high order non-conservative interpolation. The results are

shown in Figure 4.7. It is interesting to see that the shock is resolved very well against the

uniform grid results, although this method is non-conservative. It might be because the time

integration is too short. There are noticeable errors in the complex smooth region, which

demonstrated that it is worse than the second order conservative interpolations. We also

noticed even larger error if the flux-correction step was implemented for this approach.
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Fig. 4.6. The WENO scheme with AMR of different refinement levels for the shock density wave

interaction problem. t=1.8. The CPU time used for the uniform grid is 32.55 seconds, and for AMR

grids are 2.15, 3.03, and 5.17 for four-level, three-level and two-level respectively.y

4.4 2-D Euler equations

In this example we solved the 2-D Euler equations. It is the double Mach reflection problem,

originally given in [18] and later used often in the literature as a benchmark. The computa-

tional domain is [0,4]×[0,1], although typically only the results on [0,3]×[0,1] are shown in

the figures. The reflecting wall lies at the bottom, starting from x = 1
6
. The computation is

carried out to t = 0.2. Figures 4.8-a and 4.8-b show the results of 5th order WENO scheme

with three-level refinement. The base grid has spacing 1/60, and the refinement ratio is 3 for

each level. Therefore the finest grid has spacing 1/540. The roll-up which represents instabil-

ity [1] can be observed easily and is comparable to the results of [1] with the finest spacing

of 1/800 and second order method.
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5 Conclusion

We have implemented high order finite-difference WENO scheme in our AMR framework.

Although the finite-difference WENO scheme achieves high order accuracy only for uniform

and smooth varying mesh, numerical results have shown that it did achieve high order

accuracy even with second order conservative interpolation in AMR framework. We think

this may be because the interpolations in AMR occur only in simple smooth region (almost

piecewise linear) and second order interpolation there can achieve high accuracy.

We tested the high order non-conservative interpolations for AMR in several numerical exam-

ples. The numerical results demonstrated that the high order non-conservative interpolation

is no better than the second order conservative interpolation, and in most cases it is even

worse.

We strongly recommend using the second order conservative interpolation when implement-

ing WENO to AMR framework.
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